
APACHE SLING & FRIENDS TECH MEETUP

BERLIN, 23-25 SEPTEMBER 2013

Hypermedia APIs on top of Apache Sling

with Granite UI

2 adaptTo() 2013

What is a Hypermedia API?

3 adaptTo() 2012

Basic principals of Hypermedia APIs

 Based on Representational State

Transfer (REST) - Uniform Interface

constraint.

 Hypermedia as the Engine of

Application State (HATEOAS).

 We talk about media types, not

domain objects.

4 adaptTo() 2012

How did it work in traditional APIs?

Client

Serialized Domain Objects

Client-side

Business Process

Logic

Client-side

Domain Objects

Server

Server-side

Business Process

Logic

Server-side

Domain Objects

5 adaptTo() 2012

How does it work the Hypermedia way?

4

Client

Hypermedia Markup

Custom

Media Types

HTML5

Media Types

Server

Server-side

Business Process

Logic

Server-side

Domain Objects

6 adaptTo() 2012

Goals and advantages of Hypermedia APIs

 Decoupling

 Encapsulation

 Reusability

7 adaptTo() 2012

Disadvantages

 More data to transfer: Textual

representation versus compact data

such as JSON.

 Latency may be greater than in more

optimized APIs.

8 adaptTo() 2013

Example

9 adaptTo() 2012

Our implementation of a Hypermedia API

We like . . .

 to use HTML5 as the hypermedia

language - it already defines quite a lot

of media types.

 to extend HTML5 on our own with

further, specific media types as

required.

10 adaptTo() 2012

Example: User Preferences Dialog

11 adaptTo() 2012

Example: Source code

Show Modal

<div id="my-modal" class="modal">

 <div class="modal-header">

 <h2>Modal from markup</h2>

 <button type="button" class="close" data-dismiss="modal">×</button>

 </div>

 <div class="modal-body">

 <p>This modal was created from markup.</p>

 </div>

 <div class="modal-footer">

 <button data-dismiss="modal">Close</button>

 <button class="primary" data-dismiss="modal">Save</button>

 </div>

</div>

12 adaptTo() 2012

Example: How did we define the new

vocabulary?

 class="modal"
Defines the markup for modal

-> modal must have an id

 data-toggle="modal"
Shows or hides the modal

-> must have href to reference the modal

 data-dismiss="modal"
Closes the modal

-> always closes the modal it belongs to

13 adaptTo() 2012

Example: How to implement the vocabulary

modal.js

$(document).on(“click”, “[data-toggle=modal]”, function(event) {

 var id = $(event.target).attr(“href”)

 $(id).show();

 $(event).preventDefault();

});

Contextual jQuery

Use the context (here: href/id) to get all your

data.

14 adaptTo() 2012

Example: What makes it different?

 We define a “media type” / “web

component” modal dialog that can be

opened and dismissed.

 The client never knows about “User

Preferences”, it only knows about

modal dialogs and how to handle them.

 The form submit is a media

implementation - free with HTML5.

 No need for special logic client-side.

15 adaptTo() 2012

What does Granite UI provide?

 CQ components that create semantic

markup.

 Every CQ component creates markup

for one specific web component

(wizard, grids, form fields, etc.)

 Client-side javascript to enhance user

experience.

 You configure pages instead of writing

the markup on your own.

16 adaptTo() 2012

What next?

 Granite UI isn’t currently meant to be

used in customer projects.

-> Create your own semantics / vocabulary in

your projects.

17 adaptTo() 2013

Questions?

